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In earlier published papers we have determined admissible geometrical structures (structures 
of type termed A and B) of equal-diameter spheres providing for the balance of forces - gravity, 
buoyancy and the force of resistance - on every particle in an unconfined bed. At constant 
superficial velocity of the fluid, porosity of bed as well as constant physical characteristics of parti
cles and the fluid the bed may be stable for a unique geometrical configuration of the particles 
only, identical with that of the uniformly fluidized bed. This configuration can be determined 
for small numbers of the Archimedes group by formulation and solution of a mathematical 
model provided that the values of Ar, Re and e for the uniformly fluidized bed are known. 

According to the theoretical model1
•
2 the hydrodynamics of the uniformly fluidized 

bed of equal-diameter spheres at AI ~ 7'2 reduces to the problem of the flow past 
a particle for in-advance-known boundary conditions. This approach has been ap
plied before3 

- 5 but a comprehensive formulation of the problem was still missing. 
The earlier papers 1

•
2 remove this drawback. 

Let the superficial velocity of the fluid, W, characterizes a given uniformly fluidized 
bed, i.e. we have WE ( Wm in , VI ) ' where Wmin is the velocity at incipient fluidization 
and VI is the terminal settling velocity of an individual particle as that in the bed 
in question in an unconfined fluid of identical properties. To solve the hydrodynamics 
of the uniformly fluidized bed at the velocity W in the most general case poses a) to find 
all plausible geometrical configurations of particles in the bed providing simultane
ously for a balance of the gravity, buoyancy and the friction forces on all particles, 
b) choose from all beds satisfying conditions a) the one minimizing the mean specific 
potential energy of particles forming the bed, or the height of the bed, because only 
such configuration is that of the uniformly fluidized bed. 

Solution of this problem presumes that for an arbitrary particle configuration 
one is able to determine the resistance force for any particle. Unfortunatelly, this is 
not the case. In view of the complexity of the problem it is reasonable to combine 
theory with an experiment avoiding assumptions of dubious validity. For instance, 
a significant progress would be made by direct experimental determination of the 
geometrical configuration of particles in uniformly fluidized beds of various porosi
ties. Experimental methods of this type though have been lacking. 

Collection Czechoslov. Chern. Commun. [Vol . 441 [19791 



3202 Bena, Havalda : 

In this paper we have used experimental data of Ar, Re, e for expansion of the 
uniformly fluidized bed. For this purpose also a mathematical model has been 
formulated. ' 

Some Equations of the Mathematical Model 

From the previous studies 1 ,z, a uniformly fluidized bed of spherical particles at 
Ar ~ 7·2 must exhibit the structures of either the type A or B. Hence only the con
figuration A and B shall be considered. 

If the origin of cylindrical coordinates is put into the center of the particle, as 
in Fig. 1, then for the corresponding part of the velocity field on the main plane 
within the boundary flow pattern of surface area SI equation (1) is valid 

where 

wS I = uA + 21tfR vz(r, (J, 0) r dr, 
d/Z 

SI = H 1R 2
', A = H zR 2

, R = daCe) [<p(e)J-l /3, 

hjR = <p(e) , 

u = vz(R, (J,O). 

(1) 

(2) 

(3) 

(4) 

In these equations each of the presumed structures A or B has its own coefficients 
HI, H2 and functions a(e). These can be found in Table I ofref. 2

• For instance, for the 

o 
y--

e 

FIG. 1 

Orientation of the Cartesian (x, y, z) and 
Cylindrical (r, (), z) Coordinates with the 
Origin in Particle Center 
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types AI and BI, HI equals 4 while H 2 = 4 - rr and, after some arrangement of the 
expression on the last line of that table, we obtain O"(e) = {rrj[24(1 - e)Jr / 3• For 
the unknown we shall take the radius R of the boundary circle, the distance, h, 
of adjacent main planes, the value of the function cp(e) and the distribution of the 
velocity vir, e, 0) on the main plane delimited by the boundary circle for r E (ro, R). 
The superficial velocity of the fluid, w, the particle diameter, d, and the porosity, e, 
(as well as the values of Ar, Re, e) for the expansion of the uniformly fluidized bed 
can be assessed experimentally. The unknowns R, h, u are given by Eqs (2)-(4). 
Eq. (1) is regarded as given for the purpose of calculation of cp(e). In addition one 
needs an equation for the calculation of v/r, e, 0) which shall be formulated by the 
following reasoning. 

In region delimited on the main plane by the boundary circle, the components 
of the velocity vector v" Va. Vz satisfy2 the following conditions: 

v(r, e, 0) = vz(r, e, 0), resp. v,(r, e, 0) = vo(r, e, 0) = 0, (5} 

when r E <ro, R), 

02V, = 0 
OZ2 

TABLE I 

(6) 

02Vz 0 
OZ2"# , when r E <r, R), Z = o. (7) 

Values of rp~l)(e) Computed from Eqs (102) and (89); Values rp<,fi(e) Computed from (102), (90); 
rp(2)(e) = hi R Computed for the Structural Types B2 and B3 Assuming the Fluidized State to Decay 
on Contact of Particles from Adjacent Main Planes while Articles within the Main Plane do not 
Contact (Table III in ref.2) 

rp~I)(e) rp<,f)(e) rp(2)(e) rpt; lee) rp<,f)(e) 

0·400 1·0990 1·1983 1·2638 0·450 1·0554 1·1481 
0·408 1·0925 1-1906 1·2367 0·500 1·0062 1·0934 
0·412 1-0891 1-1867 1·2227 0·550 0·9532 1·0356 
0·416 1·0858 1-1828 1·2083 0·600 0·8978 0·9760 
0·420 1·0823 1·1789 1-1935 0·650 0·8414 0·9158 

0·700 0·7850 0·8560 
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From Eqs (5) we obtain 

= ovol = 02V 1 = 0 
z=O 2 z=O ' Or reX Or reX 

where X == (ro, R). 
After substitution from Eqs (5) and (8) into the continuity equation we have 

OVzl = o. 
z-O 

OZ reX 

(8) 

(9) 

The Navier-Stokes equation for the coordinate r. Because in the gravity field 
the component of the volume force parallel to the direction of r vanishes and for 
z = 0 Eqs (5), (6)r, (8), (9) are valid, the Navier-Stokes equation for the coordinate 
r at a steady flow takes the form 

~I =0. z-O 
Or reX 

(10) 

The Navier- Stokes equation for the coordinate e. From Eqs (5), (6) and (8) 
there follows that the Navier-Stokes equation for the coordinate e reads 

*lz=O = o. 
reX 

(11) 

From the above it is apparent that once we have adopted the assumption (5), 
the conditions (6) are a necessary supplement enabling that a homogeneous pressure 
field exists in the main plane, i.e. that we have . 

p 9= per, e), when rEX, Z = O. (12) 

The last expression also yields Eqs (10) and (11). Expressions (5) may hold for the 
main plane only provided Eq. (12) is true, for a non-zero component of the pressure 
gradient would induce corresponding non-Zero velocity gradient component. 

The N avier-Stokes equation for the coordinate r. From Eqs (5) and (9) there 
follows that the Navier-Stokes equation for z = 0 and the axis z takes the form 

1 

2 1 2 1 1 ' _ _!~ + !!:.. I~ + ~ + ~ oVz = 0 
9 z=O 2 z=O 2 z=O z=O' 

(2 oz reX (2r oz reX Or reX r or reX 

(13) 
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because as 

a
2

vzl = 0 ae2 z=o . 
re X 

(I4) 

The orthogonal coordinates of the stress tensor in the main plane for z = 0 and 
rEX from Eqs (5), (S) and (9) are 

Prr = Poo = pzz = - P , 

(I5) 

Subsequently one has to determine whether 

avol ¥ 0 oVr I ¥ 0 . 
z-o ' z-8 

OZ reX OZ rEX 
(I5a) 

Eq. (13) contains two dependent variables, P = p(z) and Vz = vz(r, z). Hence, 
one needs at least one additional equation and boundary condition. If we put 

P* = p + g(}rZ (I5b) 

then in view ofEq. (12) one may write Eq. (I3) in the form 

J1 JVlz=o = grad p* Iz=o , 
reX reX 

(16) 

where J is the Laplace operator. If Eq. (I6) holds then we have also 

J1 div (Jv) Iz=o = div (grad p*) Iz=o 
reX reX 

(17) 

JiJ(div v) lz=o = JP* lz=o 
reX reX 

(1S) 

Jp* Iz=o = 0 
reX 

(19) 

as the fluid is incompressible and hence div v = O. 
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Eq. (19) is independent of Eq. (13) and represents the additional sought equation 
which, according to Eqs (12) and (15), in the cylindrical coordinates reads 

(20) 

The boundary conditions for Eqs (13) and (20). According to the theoretical 
model the limiting case of the uniformly fluidized bed is an isolated particle falling 
at a terminal velocity Vt in an unconfined quiescent fluid. This means that a solution 
of the mathematical model of the uniformly fluidized bed for R -+ 00 must reduce 
for the stream function, pressure and velocity components Vr' VO, Vz to the Stokes' 
solution in an unconfined fluid. Usually, expressions for these quantities in case 
of an isolated particle are expressed in terms of the spherical coordinates. After 
transformation into the cylindrical coordinates one obtains equations which may be 
used as necessary conditions for a test or the assessment of correctness of the expres
sions for the flow past a particle in the uniformly fluidized bed for R = 00 andz = o. 

Stokes' solution in cylindrical coordinates is independent of e and reads 

(21) 

(22) ~' 

(23) 

3rOV(Z2 [1 r~ ] 

4 (r2 + Z2)3 /2 (r2 + Z2)5 /2 

3 r oVt _ ------.1~_t _ _ + v 
4(r2 + Z2)1/2 4(r2 + Z2)3 /2 t, 

(24) 

or 

(25) 

(26) 
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Additional suplementary conditions to Eqs (13) and (20) shall be derived by the 
following argument: Consider a ring of fluid symmetrically on both sides of the main 
plane in cylindrical coordinates for I' E (1'0' R) as in Fig. 2. This Fig. shows a cut 
ABCD through the particle's center at e = const. by a plane perpendicular to the 
main plane. The shape of this cut is independent of the angle O. Let Pz, or p" be the 
stress vector at the point M(r, 0, 0) in the elementary surface perpendicular to z, 
or r. A projection of the vector Pz' or p" into the direction of the axis z shall be 
designated as pzz or Tz,. If from the volume forces only the gravity acts on the fluid 
then, using Fig. 2, we may write 

- gQr [n(r + dry - nr2] dz + 2n(r + dr) (Tz, + ! aTzr dr) dz -
2 ar 

- 2nr (1:z, - ! aTz, dr) dz + [n(r + dr)2 - nr2] . 
2 ar 

. [p +! apzz dz _ (p _! apzz dZ)] = O. 
zz 2 az zz 2 az 

Eq. (27) rearranged and after neglecting small first-order quantities yields 

After substitution from Eq. (15) into (28) we obtain 

apl (2 a2
vzl a

2
vzl a

2
v, I -gQr ~ - Z~O + J1 --2 Z~O + --2 Z~O + -- z~O + 

aZ ,eX aZ ,eX ar ,eX ar aZ ,eX 

+ ! avzl + ! av'l ) = 0 
z-Q z-O ' 

I' ar ,eX r aZ ,eX 

FIG. 2 

Stresses Assigned to Surfaces on an Infinitesi
mal Ring of Fluid in Cylindrical Coordinates 

O(~ 
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for we generally have 

pzz = - p + 2J1. oVz , 
oz 

or opzz = 
oz 

A comparison of Eq. (I3) and (29) yields the relation 

0
2 

Vzl + ! OVr 
/ + ~I = 0 . 2 z-O z-O z-O 

OZ reX r OZ reX or OZ reX 

Bena, Havalda : 

(30) 

(31) 

Eqs (13) and (31) are met provided we substitute from Eqs (22) through Eq (26), 
which is a necessary condition for their adequacy. 

Eq. (31) yields important boundary conditions 

CVr
/ = 0 z-o ' 

OZ reX 
(32) 

(33) 

(34) 

02 VZ / U(}r 1 opl 
- 2- z=O = - + - - z=O 
or r=R J1. J1. OZ r=R 

(35) 

and other expression which may be useful in the solution of the problem of the flow 
past a particle within the bed. 

These other conditions and relations are obtained by the following arguing: Let us 
designate a set of streamlines passing in the main plane through the circle of radius 
r E (ro, R) with the center coinciding with that of the particle, by the term adjoined 
and the enveloped surface formed by these streamlines is the surface of adjoined 
streamlines. For a given r each particle is assigned equal surface of adjoined stream
lines. The planes parallel to the main plane intersect with the surface of adjoined 
streamlines in closed curves. According to the geometrical configur ation of particles 
in the structures of type A and B these closed curves deviate from the circle the less 
the greater the porosity and the smaller the distance of the given plane from the main 
plane. For an isolated particle in an unconfined fluid e ~ 1, these curves become 
-circles in an arbitra~y vertical distance from the main plane and an arbitrary r. 

If in the cylindrical coordinates according to Fig. 1 one draws through the origin 
.a plane () = const. (perpendicular to the main plane) its intersections with the surfaces 
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of adjoined streamlines form streamlines falling into this plane. Corresponding images 
of the streamlines shall be termed lines n. A set of 11 lines for an arbitrary r is, for the 
structures AI ' A2 , Ax and B1 , symmetric with respect to the axis z passing through 
the center of the particle but the shape of the 11 lines for a given r depends on the 
angle e and repeats after a certain period of values e. In case of structure B2 and B3. 

this symmetry remains preserved only for certain angles e. In case of the flow past 
an isolated particle in an uncofined fluid, e has no effect on the shape of the n lines 
characterized in Fig. 3. The m lines are perpendicular to the 11 lines and each of them 
is the line of constant potential of the velocity vector which is the potenti al vector. 
The line m = 0 falls into the main plane. 

A family of the surfaces of the adjoined streamlines continuously fills the space 
assigned to the flow past the particle, excepting the normal passing through particle's 
center. The family of the n lines fills continuously the plane e = const. in the region 
corre,ponding to the flow of fluid passing past the particle. The velocity vector y 

in an arbitrary point M(r, e = const., z) is thus situated as a tangent to the line n 
passing through this point. This vector makes with the vertical an angle fJ which 
shall be taken positive if the velocity component Vr is oriented toward the origin 
of the coordinates. Thus we may write 

Vz = 1J cos fJ, 

Vr = -vsin fJ 
and also 

vr = -Vz tgfJ· 

FIG. 3 

Streamline (lines nt , n2' ... ) and· Equipoten
tial Line (lines mI' m2 • ... ) for Flow Pattern 
under the Creeping Flow Past an Isolated 
Particle in an Unconfined Fluid 
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From the last equation we have 

OVr 

OZ 

For Z = 0 Eq. (9) holds and thus 

OVz tg fJ _ Vz 0 tg fJ , 
oz OZ 

OVrJ - z-o = 
OZ r:X 

because for z = 0 beta equals zero and hence 

otg13 o tgfJ~ __ ~ 
oz ofJ OZ cos2 13 oz 

In analogous manner we obtain from Eqs (37) and (38) 

OZVr 1 OVzl OfJ l [ 0 ( 013)JI 0 ( 013)1 - - z=o = - - z=o - z=o - V z - - z=o = - - Vz - z=o' 
or OZ reX or rEX OZ rEX or OZ reX or OZ rEX 

(38) 

(39) 

(40) 

(41) 

An arbitrary plane e = const. passing through the center of the particle perpendi
cularly to the main plane is an osculating plane for all encompassed streamlines at the "_ 
points where these intersect the main plane. If e is the radius of curvature of the 
streamline for z = 0 then its corresponding n line in the close vicinity of the main 
plane may be identified with the circle of radius equal to the radius of curvature e. 
According to Fig. 4 where t..n' is the length of arc on the circle of radius e correspond
ing to the angle fJ' we may write 

fJ = t..n'/e = arcsin (t.. z/e) , 

\\, Ji"=const 

FIG. 4 

Sketch of the Radius of Curvature of the 
Streamlines in the Main Plane under the 
Creeping Flow 
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beca use {3 = {3'. From this 

(42) 

The values of (! are known for two limiting conditions: a) According to the theoretical 
model for the creeping flow past the particle we have 

(! -+ ro, when z = ° and r -+ ro, 6E (6m ln> 1). (43) 

b) For R -+ 00, or 6 -+ 1 (isolated particle in an unconfined fluid) we have 

(44) 
or 

(45) 

where r+ = rlro' Eqs (44) and (45) are equivalent. 

The derivation of Eq. (45): Eq. (45) has been derived from (21) after its arrange
ment to the form 

tf;(r, Z)IR=oo = Vtr~ (.:..)2 {1 _ 3/2[(rjroY + (zjro)2]I /2 + 
2 ro 

+ 1/2[(rlro)2 + (zlroYJ 3
/
2} . (46) 

Putting, in Eq. (46) tf;(r, Z)\R = 00 = const. = tf;;, where tf;; E (0, (0 ) we obtain an equa
tion for the streamline in dimensionles,s variables zjro and rlro which, for z = ° 
intersects perpendicularly the main plane. From Fig. 3 it is apparent that the inde
pendent variable of the implicit function is zlro because a single value rlro has two 
values zlro. If Fig. 3 is rotated so that the positive direction of the axis r in the cylin
drical coordinates becomes identical with the positive direction of axis rlro then the 
positive direction of the ordinates becomes identical with the negative direction 
of the axis z and for the independent variable in the expression for the stream line 
one has to take 

x = -zlro. (47) 

Then the dependent variable is 

y = rlro . (48) 

The streamlines for rjro <1 are curves oriented in the direction of the negative 
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axis z. Positive normal to the streamline for z = ° is directed as the positive axis 
rjro and the center of curvature falls onto the negative normal. This means that the 
curvature of the streamline is negative and the computed radius of curvature e has 
a sign opposite to that of the quantity II in Eq. (44). 

Let us rewrite Eq. (46) in an implicit form 

where l/Ii is a constant. Then we have 

I 
F~x' F~y, F~ I 

n + = - ;;jr = (F,2 + F,2)3/2j F" F" F' 
t: .. 0 X Y YX' YY' Y • 

F~, F;, ° 
(50) 

The symbols F' or F" designate the first and second order partial derivatives of the 
function F(x, y) with respect to the variables shown by the subscript. For z = ° 
we may write 

-ll+ = 'jro = -F;(O, y)jF~x(O, y) = _(4y4 - 3y3 -- y)j3(y2 - 1) . (51) 

According to Eq. (48), we can infer that Eqs (45) and (51) are identical. 
Equation (42) plays an important role in the formulation of the boundary conditions 

for Eqs (13) and (20). After substitution into Eq. (31) from Eqs (39), (41) and (42) 
we obtain 

:2~zlz_0 - ~- Iz-o - ! O",Vzl z_o - [Vz ~ (!)Jlz-o = 0, (52) 
uZ reX rll reX II ur reX ur II reX 

or 

o2Vzl _ ! ~ (rvZ)1 = ° . 
2 z-O z-O 

OZ reX r or . II reX 
(53) 

In the points of contact of the two boundary circles we must have according to the 
theoretical model that 

(54) 

because the vertical plane passing through the contact point of the two boundary 
circles separates equal subspaces of the stream around two neighbouring particles. 
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Corresponding streamlines on a finite segment on both sides of the main plane shall be 
perpendicular to this plane. 

Owing to the continuous distribution of the velocity vector the streamlines pas
sing through the remaining points of the boundary circle satisfy condition (51) 
but the section where these remain perpendicular diminishes with increasing distance 
from the point of contact of the boundary circles. 

For the boundary circle thus we have generally 

lIe -> 0, when I" -> R, z = 0 . (55) 

If for the boundary circle Eq. (55) is valid, then owing to the continuous change 
of the velocity vector we may write for the region of constant velocity between two 
boundary circles that 

l/e = 0, when r> R, Z = o. (56) 

From Eqs (55) and (56) there follows 

l/e = 0, when r ~ R, Z = o. (57) 

From Eqs (57), (49) and (39), or from Eqs (41), we get (32)1 or (32)2. From Egs (31), 
(32)1 and (32h we have in turn Eq. (33). 

For the creeping flow past the particle we have e -> 1"0 if r -> ro for z = 0, R > roo 
From Eq. (42) then follows 

afJj z-o az r:ro 
R>ro 

or (ljz;o 
r=ro 
R>ro 

Since the fluid with internal friction satisfies 

one obtains from Eq. (58) and (39) or (41) that 

avrj = 0 
z-o az r:,o 
R>ro 

From Eqs (31) and (60) there follows Eq. (34). 

= ro· 

1 avz

1 

- --z-o 
ro ar ':'0 

R>ro 

(58) 

(59) 

(60) 

The function v = vz(r, e~ 0) on the connecting line of the centers of two neigh
bouring particles passing through the point of contact of the two adjacent boundary 
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circles may take formally the form according to Fig. 5 or 6. For a fluid with internal 
friction the situation is as that in Fig. 5 according to which 

(61) 

The validity of Eq. (61) for r > R follows from the theoretical model because in region 
with constant velocity between the boundary circles is 

Vz!'z=o = u = const. 
r>R 

(62) 

From Eqs (61), (33) and (13) we get Eq. (35). In case of an isolated particle when 
e = 1 or R = 00 then 

-ger' (63) 

From Eqs (35) and (63) there follows 

o2Vzl 
2 z=o = O. or r=R=a) 

(64) 

Analysis of the left hand side of Eq. (35) requires following considerations regarding 
the value of op/oz. From the force balance and Eq. (12) there follows that between 

FIG. 5 

Assumed Velocity Profile in the Main Plane 
on Line Connecting Centers of two Neigh
bouring Particles Passing through the Point 
of Contact of the Boundary Circles Assigned 
to these Particles 

FIG . 6 

Formally Possible but in a Real Fluid 
Improbable Velocity Profile in the Main 
Plane on the Line as on the Previous Figure 
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two main planes in an arbitrary stream tube the decrease of the static head amounts to 

f
h op 

[-gf2f - g(f2s - f2f)(l - e)] It = -dz. 
o OZ 

For local values under the creeping flow past the particle we have 

(65) 

(66) 

where OPI/OZ characterizes expansion or contraction of the stream tube; OP2/0 Z 

corresponds to the increase of potential energy of the fluid, and OP3/0Z is a measure 
of dissipation of the mechanical energy due to the viscous friction. According to the 
theoretical model the cross section in each or in every second main plane is the same 
and hence 

fh OPI dz = 0 
o oz 

or -'!J. dz = 0 . f
2h 0 

o OZ 

We have also clearly 

fh OP2 dz = -gI2rlt, OP2/0Z = -g(}f. 

o oz 

From Eqs (66) through (68) we obtain 

FIG . 7 

fh op 
~ dz = -g((}s - (}r)(l - e) h 

o OZ 

Streamline Pattern for Structures AI' A2 , A3 
in the Vertical Plane Passing in the Main 
Plane through the Particle Centers and Points 
of Contact of Boundary Circles 
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or 

---1 dz = -2g((}s - Qr)(i - 6) h . f
2h op 
o OZ 

(70) 

Since according to Eqs (9) and (61) the elementary stream tubes passing through the 
boundary circle within an infinitesimal neighbourhood of the main plane do not 
change its cross sectional area we have 

OPli = O. 
, oz :~~ 

(71) 

Fig. 7 depicts the streamline for any of the structures A, A2 , Ax in the plane e 
= const. passing through the points of contact of the boundary circles. The shape 
of the streamlines is symmetrical with respect to the horizontal plane in the middle 
between two adjacent main planes. This symmetry of the flow past the particle 
remains preserved in any arbitrary vertical plane passing through the particle center. 
A more complex picture of the streamline pattern appears during the flow past 
a particle in the structure B2 or B3 . Fig. 8 gives the expected pattern of the stream
lines in case of the structure B2 in the plane e = const., whose contour is shown 
in Fig. 11 by a straight line. The symmetry of the streamlines exists only with respect 
to the main planes. 

According to Fig. 7 it must be expected that between two main planes the '_ 
values of P3 for an elementary stream tube which envelopes an arbitrary streamline 

FIG. 8 

Streamline Pattern for Structure B2 in one 
of the Vertical Planes Passing in the Main 
Plane through Particle Centers 
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gradually depart symmetrically on both sides from the straight line 

y = Po - gees - er)(l - e) It , (72) 

where Po is the static pressure on the given main plane from which the values of II 
are calculated. For the stream tubes passing through the boundary circle we adopt, 
appart from Eq. (72), a,nd additional assumption in the form 

(73) 

The assumption (73) expres;es the fact that, apart from the mentioned symmetry, 
Eq. (71), holds and the streamlines passing through the boundary circle rerr.ain 
perpendicular to the main , plane in a finite distance, i.e. there is no bending or ex
pansion of the streamtubes which could cause deviations of the expression on 
theJeft hand side ofEq. (73) from the mean value given by the right hand side of(73). 

The streamlines in Fig. 8 passing through the boundary circle are shown by broken 
lines. As these are symmetric with respect to any main plane, i.e. that Eq. (71) is valid, 
and remain perpendicular within a finite distance from the main plane, one has to ex
pect even in this case the validity of Eq. (73). 

According to Eqs (66), (68), (71) and (73) we have 

(74) 

On substituting from Eq. (33) and (61) into Eq. (13) we obtain (35). From Eq. (35) 
and (74) there follows . 

02V I 1 ~ z=o = - - gees - ee) (1 - e) . 
ur r=R JL 

(75) 

In accord with the above it is generally true that 

~I , MI ;- z=o = - gee - gees - ee)(l - e) + -;:- z=o ' 
uZ reX _ ' uZ reX 

(76) 

where the expression OP Iz=o is, according to Eq. (26), a variable of some function 
OZ reX 

(
OPI" F - z-o' 
OZ reX 

(77) 
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from which it can be expressed explicitly. From Eq. (74) and (76) we have 

OPI = o. z-o 
OZ rEX 

(78) 

The validity of Eq. (78) for r > R follows from the theoretical model because there 
are no velocity or pressure variations in region between the boundary circles. From 
Eqs (13), (34) and (76) we obtain after some arrangement 

O~PI·z=o = g({ls - (lr) (1 - e) = Jl [O:V2Z]Z=O + 2 :vz]z=o]. (79) 
uZ r=ro ur '='0 rO ur '='0 

R>ro R>ro R>,o 

Since under the creeping flow past the particle there follows 

we may write 

or 

( ) 
9 J1V I 

g {l. - (lr = -2 2 ro 

(80) 

(81) 

Equations (1) through (4), (13), (20) and the boundary conditions represent the 
basic material for the mathematical solution of the flow past the particles in-the main 
plane. The presence of the Laplace equations (13) or (20) in the set of equations 
is quite demanding as far as the boundary conditions are met. These requirements 
have not be thus far met. 

In this work we shall show that with the above knowledge one can formulate 
a simplified mathematical model amenable to analytical method of solution. The 
results of the simplified solution enable formulation of the complex model. 

The Simplified Mathematical Model 

From the physical concept and Eq. (54) it is apparent that for porosities close to those 
at incipient fluidization the value of {l causes to increase very rapidly with the distance 
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from particle's surface. According to Eq. (2) it means that in these cases the derivative 

vanishes very quickly. The quantity 

however, according to Eq. (75) retains large values of the order of magnitude 
g({15 - (1r) (1 - e) in the whole interval r E (ro, R). 

From this as well as from Eqs (13), (34) and (76) one can conclude that for porosi
ties close to that of incipient fluidization we may write 

!lEI ~ o2VzI ~I ~ ( - ) (1 - e) 
::l z=o ::l 2 z=o' ::l z=o 9 {15 {1f , 
vZ rEX Vr rEX vZ rEX 

(82a) 

o (op I ) == 0 (o2Vz
l ) . z=O 2 z=O OZ rEX OZ rEX 

(83) 

From Eqs (13), (59), (61), (76), (82) and (83), after neglecting the terms iJ!.lz=o and 
OZ rEX 

o2~zlz=0 there follows a simplified equation (13) with the boundary condition in 
OZ rEX 

the form 

! ~ (r dVz) = - K , 
r dr dz 

Viro, 0, 0) = 0, dVzlz=o = 0, 
dr r=R 

K = - g({15 - {1f)(1 - e)/Il· 

(84) 

Eq. (84) together with Eqs (1) through (4) represent a simplified mathematical 
model of the flow past the particle in the main plane where for input quantities 
we take w, d, e, K (or Ar, Re, e), HI' H 2u(e). According to the relationships defining 
HI, H 2 and u one has to distinguish bet ween three kinds of structural types 3 

a) structural types Al and B1 , for which the corresponding quantities shall be 
designated by the superscript (1); b) structuraly types A2, B2 and B3 , for which the 
corresponding quantities shall be superscripted by (2); c) structural types Ax distin
guished by the sup«rscript (x). 
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This means that for Eq . (84) there exist three <;iifferent groups or relations for 
11 I' Hz and u; thus we have three simplified mathematical models. Only one of these 
though represents the uniformly fluidized bed in the state close to incipient fluidiza
tion. Solution of this model with the aid of the experimental data for Ar, Re and B 

for the expansion of the uniformly fluidized bed enables the value of hjR = cp(B) 
to be determined. The computed value of hjR at the porosity ofi~cipient fluidization 
emin E <0·412; 0-420) must be identical, within experimental error, with the value 
tabulated in Table III of previous work2 for the structural type characteristic for the 
uniformly fluidized bed. This identifies the geometrical configuration of particles 
in th~ uniformly fluidized bed in region close to inciJ?ient fluidization. The remaining 
two mathematical models cannot supply, fQr the v.alues of Ar, Re and B measured 
during expansion of the uniformly fluidized bed, values of hjR equal to those for 
incipient fluidization in Table III. This is so becaqse individual structural types 
exhibit different characteristic triples of values Re, Ar and B than fo r the uniformly 
fluidized bed and the first condition of stability must be metl. 

Solution of the Simplified Mathematical Model 

Eqs (84) yield the relations 

KR2 2r Kr2 Kd2 
v (r, 0 0) = - In - - - + -

z ' .. 2 d 4 16 

{)r 

vzrdr = --In- - -- + ---. ·fR KR4 2R 3KR4 KR 2d2 

d / 2 4 d 16 16 

TABLE II 

(85) 

(86) 

Parameters of the Uniformly Fluidized Bed for Structures B2 or B3 Based on Simplified Mathema
tical Model (Eqs (96), (98), (103), (104)) where rp(2)(e) == Q1~2)(e) (from Table I) 

IIl vI hi d lid ulv I hi d l id 

0·400 0·0512 0'71252 1'1892 0'450 0·0779 0'71287 1'2418 
0-408 0'0550 0'71266 1' 1971 0'500 0·1129 0'71231 1·3029 
0-412 0'05695 0·71270 1'2011 0 '550 0·1580 0·71156 1·3742 
0·416 0·0589 0'71276 1·2052 0·600 0·2145 0'71135 1·4577 
0·420 0·0610 0 '71282 1'2093 0·650 0·2841 0'71281 1·5567 

0'700 0·3688 0'71737 1'6761 
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According to Eqs (4) and (85) we have 

KR2 2R K R2 Kd2 
u=-In-- - + - . 

2 d 4 16 
(87) 

Solving Eqs (1), (2), (86) and (87) we obtain after rearrangement 

(88) 

There the superscript (i) = (1), (2), (x) refers to individual groups of structural 
type~ and we may write 

ro(1) e - 9 1 - e In 2 ------ -
{( 

It )2/3( [( It )1 /3J 
( ) - ( ) 24(1 - e) cp(1)(e) 24(1 - e) cp(1)(e) 

8+lt) 4+lt It ' } 
- 16 + ~ - 256[lt/24(1 _ e) cp(1)(e)]2/3 ' (89) 

w(X)(e) = 9(1 - e) . . 
ex sm2ex 

{( 

It )2/3 
6 (4 tg - + --) (1 - e) cp(X)(e) 

2 cos2 exl2 

(

' [ ( It )1
/
3] 1 

. In 2 6(4tg~ + sin2ex )(1- e)cp(X)(e) - 2:-
2 cos2 al2 

4lt [ It ]-2/3} 
a sin 2ex ex sin 2ex . 

256(4tg - + -_._-) 6(4tg - + --)(1- e)cp(X)(e) 
2 cos2 exl2 2 cos2 exl2 
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Eq. (85) can be rearranged using Eq. (2)3 or the relationships for R according to the 
Table I in ref.2 to give 

where 

x(1)(e) = 9(1 - e){[1t/24(1 - e) cp{l)(e)J2 / 3 In 2r/d - r2 /2d 2 + 1/8} (93) 

x(2)(e) = 9(1 - e) {[1t/12 )3(1 - e) cp{2 l(e)J2/3 In 2r/d - r2/2d2 + 1/8} (94) 

x{X)(e) = 9(1 - e) In - - - + - . 
{[ 

1t ]2 /3 2r r2 I} 
6 (4 tg ~ + sin 2~ ) (1 _ e) cp(X)(e) d 2d

2 
8 

2 cos2 ~/2 

(95) 

In the region of constant velocity we have 

There from Eq. (4) and (92) through (95) we have 

~(I)(e) = 9(1 - e){[1t/24(1 - e) cp{l)(e)J2/3 [In (2 (1t/24(1 - e) cp(I)(e)1 /3) -

. - 1/2] + 1/8} . (97) 

~(2)(e) = 9(1 - e) {[1t/12)3(1 - e)cp(2)(e)J2/3 [In(2(1t/12)3(1 - e)cp<2)(e))1/3)_ 

- 1/2] + 1/8} , (98) 

{[ ]

2/3 
~(X)(e) = 9(1 _ e) 1t . 

6 (4 tg ~ + sin 2~ ) (1 - e) cp<X )(e) 
2 cos2 ~/2 

(99) 

Relationships (89) through (99) contain an unknown function cp(i)(e) = (h/R)(i) 
which must be found in a suitable manner. 

Calculation of h/R. This calculation can be carried out from Eqs (88) through 
(90) by successive approximation. For this purpose we use the following equation 
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instead of Eq. (88) 

(100) 

There A. is small positive number. In the calculation we put A. = 10- 6 and A. = 10- 8 . 

The values of hjR calculated for these two cases differ only on the fifth decimal. The 
quantity Re in Eq. (100) does not have the superscript (i) (i) = 1,2, x) for the values 
of Re are measured for the expansion of the uniformly fluidized bed whose structure 
is not known a priori. Expressions aP)(e) are defined formally in the same way as 
w~)(e) except that the former satisfy also the condition (100) which under the equality 
w(i)(e) == w~)(e) holds only for the structural types corresponding to the uniformly 
fluidized bed Then the values hjR = cp(i)(e) possess a physical meaning. The values 
hjR for the remaining structural types are physically meaningless for the group 
Rej Ar measured in the uniformly fluidized bed does not correspond for given e 
to these structures. 

For the uniformly fluidized bed at Ar ~ 7·2 we may write6 with a relative error less 
than 5% the following Eq. 

Re = -Is Ar e4
•
65 

• (101 ) 

TABLE III 

Data for the Assessment of Validity of Condition (82) 

" "I " ""I r5 
~ 8z z~o - -; or2 z=o - g( {ls - (Ie) (1 - 6) 

/lV, 
f-rO t r=ro 
R>r R>ro 

0-400 ' 0-5592 3-2592 2-7 
0-408 0-5769 3-2409 2-664 
0-412 0-5857 3-2317 2-646 
0-416 0-5945 3-2226 2-628 
0-420 0-6034 3-2134 2·610 
0-450 . 0 -6709 3-1459 2-475 
0-500 0-7848 3-0348 2-25 
0-550 0-8995 2-9245 2-025 
0-600 1-0123 2-8123 1-8 
0-650 1-1209 2-6959 1-575 
0-700 1-2213 2-5713 1-35 

Collection Czechoslov_ Chern_ Commun_ [Vol. 441 [19791 



3224 Bena, Hll'valda: 

For the calculation of hjR = cp(e) we therefore may use the following equation 
instead of Eq. (100) 

(102) 

The values hjR were calculated on the one hand from the experimental data 
given in ref. 6 from Eq. (100) and, on the other hand, from Eq. (102). Since the results 
did not differ appreciably, Table I provides only results following from Eq. (102). 
The quantities cp~l)(e) = (hjR)(l ), or cp~2)(e) = (hjR)(2) have been assigned to the 
quantities w~I ) (e) or w~2)(e). It can be shown that the values cp~x ) (e) computed from 
Eq . (102) for w~X)(e) fall into the interval (cp~l ) (e) , cp~2)(e)) and vary with the 
magnitude of the angle a. 

From the above the value cp~I)(e), cp~2)(e) from Table I should be compared for 
e E <0·412, 0·420) with the values cp(i)(e) = hjR from Table III in reU which were 
derived from the geometrical concept for all plausible structural types. The content 
of the Table III from ref. 2 is shown graphically in Fig. 9. The uniformly fluidized 
bed at incipient fluidization exhibits that structure for which cp~)(e) = cp(i)(e). From 
this comparison it is clear that the uniformly fluidized bed at incipient fluidization 
can plausibly exhibit only structures B2 or B3 • In addition the stratum of the fluidized 
state beginns by contact of particles from adjacent main planes while the particles 
within the main plane still do not contact each other. For this case the Table I shows 
values hjR = cp(e) = cp(2)(e) from Table III of reU. The agreement between cp~2 )(e) 
and cp(2)(e) in Table I may be rated as very good. From Fig. 9 it is apparent th~! 

0:8 

~ 

J A 
0:6 

B2 , B3 .... ; ..... A1 ;~1 

0-4 "' A; Sz;83 

B, 

0.'2 

0-8 1- 2 1-6 2·0 
h/R 

FIG. 9 

Porosity emin as a Function of h/R = /(J(Il) which May Cause in Beds of Various Structures the 
Loss of Fluidized State after Contact between Particles 
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qJ~)(B) and qJ~x)(B) cannot belong in region of incipient fluidization to any structural 
type. 

The geometrical configuration of particles in the main plane in the structure B2 and 
B3 is apparent from Fig. 10. Fig. 11 or Fig. 12 depict spatial configuration of the. 
main planes in the structures B2 or B3 . 

FIG. 10 

Geometrical Configuration of Particles in the 
Main Plane for Structures B2 and B3 

The circle within the hexagon is the 
boundary circle; internal circle depicts 
particle. 

FIG. 12 

FIG. II 

Spatial Configuration of Main Planes in 
Structures B2 

Only boundary flow patterns with bound
ary circles are shown. 

Spatial Configuration of Main Planes in Structures B3 
Only boundary flow patterns· and boundary circles are shown. 
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The geometrical configuration of particles in the structures of the type B2 or B3 
significantly differs from that in the structures AI' A2, Ax and BI (ref.2), which 
still strike the balance of the gravity, buoyancy and resistance forces for each particle. 
This justifies the assumption that the uniformly fluidized bed displays in the whole 
interval of porosity e E ( emin, 1) the stru~ture of the type B2 or B3. The first condition 
of stability of the uniformly fluidized bed means that from all possible beds with the 
structures of the type A and B for given porosity e > emin ' superficial velocity of the 
fluid W < Wmin' given particles and fluid, the uniformly fluidized will be the one 
minimizing the rate of mechanical energy dissipation in the course of the flow past 
the particles. The type of the structure must necessarily strongly influence the rate 
of dissipation for otherwise identical conditions and since the admissible structural 
types markedly differ, it is probable that the minimum rate of dissipation is associated 
with only one structural type. 

Table II summarizes values ulv p hid and lid computed on the basis of the sim
plified mathematical model, assuming its validity up to the porosity 0·70 and the 
structures of the type B2 or B3 . For the spacing I of the centers of the particles in the 
main plane (see Fig. 10 of this paper and Table I in the previous paper2) we may write 

I = 2R , or I = d = 2Rld = 2[(rr/12 J3(1 - e) 41(2)(e)J)1 /3 . (103) 

The quantity hid is given by 

(104) 

The values lid, in accord with the theoretical considerations, satisfy the condition 
lid> 1, i.e. no contact of particles in the main plane. The spacing of the main 
planes, measured by the dimensionless expression hid, are smaller than in the case 
if in the structures B2 and B3 the particles should contact both between the adjacent 
main planes as well as with in the main plane. For this limiting case emin = 0'2595, 
hid = 0·8165 and hll = d. 

Figs 13 through 15 show the velocity profiles in the main plane computed from 
Eqs (92) and (94) in terms of the dimensionless variables vzlVtb~ and rid, for the 

structures B2 and B3. The values 41(2)(e) for each e were computed in the same 
way as 41~)(e) in Table 1. The broken line pertains to an isolated particle in an 
unconfined fluid when R = 00. 

From the approach applied in the process of the model simplification it follows 
that a solution of this model satisfies the conditions (59), (61), (64) and (75). For 
an arbitrary R we may write 
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i.e. condition (83) may be regarded as satisfied in view of Eqs (53) and (78). For large 
R, however, the conditions (82) are not met. 

Table III summarizes data computed from the simplified model important for the 
assessment of validity of condition (82) I' The values in the third and the fourth 
column of this table are the limiting values for the expression 

_ ,.~ _ a2
VzI 
2 z=O pv, a,. R > ro 

rEX 

~=0'999999 

1'0 0'999 09 

0 '999999999 

rid 80 rid 160 

05 c-r--,,--,---,--;--,-, 

/ 

FIG. 13 

Dimensionless Velocity Profile (approximat
ion solution) 

vzJv, = F(rJd) for the flow past the par 
ticle in the uniformly fluidized bed with dif
ferent porosity and for the creeping flow past 
an isolated particle. -- particle within 
the bed, -- ---- isolated particle. 
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. OPI ... . 02V I The quantity - z=o for e = 0·400 IS approximately SIX times smaller than -----f z=o but 
OZ '='0 or '='0 

R>~ R>~ 

with increasing porosity both values converge. From Table III it may be assumed that 
Fig. 13 is a good approximation of reality. The curves in Figs 14 and 15 for e > 
> 0·8 carry a large error. 

LIST. OF SYMBOLS 

A structural type or cross sectional area of region of constant velocity within bound-
ary flow pattern 

Ar = gd3(Qs - Qf) Qr/112 Archimedes group 
d diameter of spherical particle 
g acceleration due to gravity 
F(x, y) function in Eq. (49) 
F~, F; first order partial derivatives of function F(x, y) 

F~x' F;y, F~y, F;x second order partial derivatives of F(x, y) 
It spacing of main planes 
HI coefficient from relation Sl = HIR2 from Table I of ref. 2 

H2 coefficient from A = H2R2 from Table I of ref. 2 

(i) super3cript 0), (2), (x) distinguishing between three groups of simplified mathema
tical models describing three groups of structural types 

K constant defined in Eq. (84)3 
/ spacing of center of particles in main plane, Eq. (103) 

equipotential lines (velocity as potential vector) 
pattern of stream lines on e = const. plane passing through particle center as th; -
origin of cylindrical coordinates 

P pressure, Eq. (76) 
P pressure in Navier-Stokes equations 
p* pressure, Eq. (15a) 
Po value of p in main plane, as background pressure 
PI' Pz, P3 fictious components of pressure P = PI + pz + P3 caused by expansion or 

contraction of streamtube (PI)' change of potential energy (P3) and dissipation 
of mechanical energy (P3) 

Prr , Poo, P zz normal components of stress tensor for a Newtonian fluid in cylindrical coordinates 
P", pressure in the plane of equator at R = 00 for an isolated sphere where the relative 

motion of the fluid in an inertial frame of reference is caused only by the motion 
of the sphere 
radial cylindrical coordinate with the origin at the center of the particle, see 
Fig. 1 

r+ dimensionless cylindrical coordinate of radius r+ = r/ro 
"0 radius of spherical particle in the bed 
R radius of boundary circle 
Re = dw iJr/11 Reynolds number 
Re(i) = dw(i) Qrlp Reynolds number (i) = (I), (2), (x) 
Re~i) = duU) Qr/p ,Reynolds number (i) = (I), (2), (x) 
Re~) = dv~i) Qr/p Reynolds number (i) = (1), (2), (x) 
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Wmin 

X == -z/ro 
X== <1'0 ' R) 
y == 1' / 1'0 
Y 

P,P' 
I:!..n' 

';=-{l 
() 

r.(i)(e) 

JL 

surface area of a boundary flow pattern 
local velocity of fluid in the boundary circle and in region of constant velocity 
between boundary circles 
value of II for structural types (i) = (1), (2), (x» 
radial velocity component in the boundary flow pattern in the principal plane 
terminal velocity of settling of an isolated spherical particle in an unconfined real 
fluid 
local z component of velocity in main plane near the particle for,. < R (direction 
of axis z in Fig. 1) 
velocity component as in Fig. 1 in the boundary flow pattern 
superficial velocity of fluid in the uniformly fluidized bed 
superficial velocity for structures (i) = (1), (2), (x) 
velocity at incipient fluidization 

dependent variable, Eq. (72) with independent variable h 
axial cylindrical coordinate, Fig. 1 
angle of as in Fig. 8· of ref.! 
angles as in Fig. 4 
length of arc on the circle of radius (l for the angle p', see Fig. 4 
porosity of uniformly fluidized bed 
porosity of uniformly fluidized bed at incipient fluidization, or minimum bed 
porosity 

angular coordinate as in Fig. 1 
function from Eq. (92), (i) = (1), (2), (X) given by Eqs (93)-(95) provided the 
fluid flows under the force balance on every particle 
constant in Eq. (100) or (102) 
dynamic viscosity of fluid 
kinematic viscosity of fluid 
function in Eq. (96) for (i) = (1), (2), (x) given by Eqs (97)-(99) 
radius of curvature of streamline for z = 0, I' E <1'0' R) 
dimensionless radius of curvature 
fluid density 
particle density 
function from R = da(e) [rp(e)] -1/3 for the uniformly fluidized bed 
function from R(i) = da(i)(e) [rp(i )(e)]-l /3 given in Table I of ref.2 for (i) = 
= (1), (2), (x) 

'rO' 'Or' 'Oz' QzO' 'rz' (lzr tangential components of stress tensor in cylindrical coordinates 
rp(e) = h/R for uniformly fluidized bed 
rp(i)(e) ratio h/R for structures (i) = (1), (2), (x) in case of force balance (gravity, 

rp~)(e) 

VI. 
w(i)(e) 

w~)(e) 

buyoancy, resistance) 
computed from Eq. (102) 
stream function 
function from Eq. (88) for (i) = (1), (2), (x) given by Eqs (89)-(91) 
function for (i) = (1), (2), (x) taking formally the same form as w(i)(e) but nor 
necessarilly satisfying Eq. (88), which satisfies (102), i.e. the variable is rp~)(e) 
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