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In earlier published papers we have determined admissible geometrical structures (structures
of type termed A and B) of equal-diameter spheres providing for the balance of forces — gravity,
buoyancy and the force of resistance — on every particle in an unconfined bed. At constant
superficial velocity of the fluid, porosity of bed as well as constant physical characteristics of parti-
cles and the fluid the bed may be stable for a unique geometrical configuration of the particles
only, identical with that of the uniformly fluidized bed. This configuration can be determined
for small numbers of the Archimedes group by formulation and solution of a mathematical
model provided that the values of Ar, Re and e for the uniformly fluidized bed are known.

According to the theoretical model!? the hydrodynamics of the uniformly fluidized
bed of equal-diameter spheres at Ar < 7-2 reduces to the problem of the flow past
a particle for in-advance-known boundary conditions. This approach has been ap-
plied before®~* but a comprehensive formulation of the prbblem was still missing.
The earlier papers''?> remove this drawback.

Let the superficial velocity of the fluid, w, characterizes a given uniformly fluidized
bed, i.e. we have w € {Wp;,, 0>, Where w,,, is the velocity at incipient fluidization
and v, is the terminal settling velocity of an individual particle as that in the bed
in question in an unconfined fluid of identical properties. To solve the hydrodynamics
of the uniformly fluidized bed at the velocity w in the most general case poses a) to find
all plausible geometrical configurations of particles in the bed providing simultane-
ously for a balance of the gravity, buoyancy and the friction forces on all particles,
b) choose from all beds satisfying conditions a) the one minimizing the mean specific
potential energy of particles forming the bed, or the height of the bed, because only
such configuration is that of the uniformly fluidized bed.

Solution of this problem presumes that for an arbitrary particle configuration
one is able to determine the resistance force for any particle. Unfortunatelly, this is
not the case. In view of the complexity of the problem it is reasonable to combine
theory with an experiment avoiding assumptions of dubious validity. For instance,
a significant progress would be made by direct experimental determination of the
geometrical configuration of particles in uniformly fluidized beds of various porosi-
ties. Experimental methods of this type though have been lacking.
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In this paper we have used experimental data of Ar, Re, ¢ for expansion of the
uniformly fluidized bed. For this purpose also a mathematical model has been
formulated. -

Some Equations of the Mathematical Model

From the previous studies!?, a uniformly fluidized bed of spherical particles at
Ar £ 7-2 must exhibit the structures of either the type A or B. Hence only the con-
figuration A and B shall be considered.

If the origin of cylindrical coordinates is put into the center of the particle, as
in Fig. 1, then for the corresponding part of the velocity field on the main plane
within the boundary flow pattern of surface area S, equation (!) is valid

wS, = ud + ZnJR v,(r, 6,0) rdr, (N
d/2
where
S, =H,R*, A=H,R?, R=do(e)[e(] ", ()
HR = ofe), ®)
u =1u,R,60). 4

In these equations each of the presumed structures A or B has its own coefficients
H,, H, and functions o(g). These can be found in Table I of ref.2. For instance, for the
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types A, and By, H, equals 4 while H, = 4 — = and, after some arrangement of the
expression on the last line of that table, we obtain o(g) = {n/[24(1 — ¢)]}"/*. For
the unknown we shall take the radius R of the boundary circle, the distance, h,
of adjacent main planes, the value of the function ¢(e) and the distribution of the
velocity v,(r, 8, 0) on the main plane delimited by the boundary circle for r € (ro, R).
The superficial velocity of the fluid, w, the particle diameter, d, and the porosity, &,
(as well as the values of Ar, Re, ¢) for the expansion of the uniformly fluidized bed
can be assessed experimentally. The unknowns R, h, u are given by Eqs (2)—(4).
Eq. (1) is regarded as given for the purpose of calculation of ¢(e). In addition one
needs an equation for the calculation of v,(r, 8, 0) which shall be formulated by the
following reasoning.

In region delimited on the main plane by the boundary circle, the components
of the velocity vector v,, vy, v, satisfy? the following conditions:

v(r, 6,0) = v,(r, 0,0), resp. ov,(r,6,0) = 1vy(r,6,0)=0, (5)

when r € {rg, R),

2%, v %0,
f'=0, or v,—2=v—2, when re<dr,RY, z=0, 6
22 * oz 922 r ko ©
d%v,
azaéO, when red{r,R), z=0. (7)
z

TaBLE I
Values of p{1)(e) Computed from Egs (/02) and (89); Values ¢$2)(¢) Computed from (/02), (90);
q;(z)(e) = h/R Computed for the Structural Types B, and B; Assuming the Fluidized State to Decay
on Contact of Particles from Adjacent Main Planes while Articles within the Main Plane do not
Contact (Table IIT in ref.?)

e 25 23 P e @) o)
0400 1-0990 1-1983 1-2638 0450 1-0554 1-1481
0-408 1-0925 1-1906 1-2367 0500 1-0062 1-0934
0412 1-0891 1-1867 1-2227 0550 09532 1-0356
0416 1-0858 1-1828 1-2083 0-600 08978 0:9760
0420 1-0823 1-1789 1-1935 0-650 0-8414 09158

. 0-700 07850 08560
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From Egs (5) we obtain

Qo Qv oo Pu) ) o Pwl
W[5 0T ol ot el 00PiR
2
L ®)
orii’ ol

where X = (ry, R).
After substitution from Eqs (5) and (8) into the continuity equation we have

v,
0z

2=0 0. (9)

reX

The Navier-Stokes equation for the coordinate r. Because in the gravity field
the component of the volume force parallel to the direction of r vanishes and for
z = 0 Egs (5), (6),, (8), (9) are valid, the Navier-Stokes equation for the coordinate
r at a steady flow takes the form

o

oz =0 (10)

reX

The Navier-Stokes equation for the coordinate 0. From Egs (5), (6) and (8)
there follows that the Navier-Stokes equation for the coordinate 6 reads ~

op
£ =0. 11
0|25 (1

From the above it is apparent that once we have adopted the assumption (5),
the conditions (6) are a necessary supplement enabling that a homogeneous pressure
field exists in the main plane, i.e. that we have

p+p(r,6), when reX, z=0. (12)

The last expression also yields Eqs (10) and (11). Expressions (5) may hold for the
main plane only provided Eq. (12) is true, for a non-zero component of the pressure
.gradient would induce corresponding non-zero velocity gradient component.

The Navier-Stokes equation for the coordinate r. From Egs (5) and (9) there
follows that the Navier-Stokes equation for z = 0 and the axis z takes the form
9%v

z

10
_g_lop
0 0z

u 8%,
o2

1 dv,
z=0

eX r or

=0, (13)

z=0

z=0
reX o 0z

=0
reX or? z

reX
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because as

%,
wzio =0. (14)

The orthogonal coordinates of the stress tensor in the main plane for z = 0 and
r € X from Egs (5), (8) and (9) are

Pie = Pog = P2z = — P>

Tp =Tp =0,

Top = Tgg = L —2, (15)
0z
dv,  Ov,
Teg = Ty = | — +— .
or 0z
Subsequently one has to determine whether
[7
| A0, %Fa #£0. (15a)
OZ [rex 0z reX

Eq. (/3) contains two dependent variables, p = p(z) and v, = v,(r, z). Hence,
one needs at least one additional equation and boundary condition. If we put

P*=p + g0z (15b)
then in view of Eq. (12) one may write Eq. (13) in the form

ndv =0 > (16)

reX

2=0 = grad p*
reX

where 4 is the Laplace operator. If Eq. (16) holds then we have also

pdiv (4v)

(17)

2=0 = div(grad p*)|,=o
reX reX
1 A(div V) e = A% oco (18)
reX reX
Ap*|.o = 0 (19)
reX

as the fluid is incompressible and hence div v = 0.
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Eq. (19) is independent of Eq. (13) and represents the additional sought equation

which, according to Egs (12) and (15), in the cylindrical coordinates reads

it J [

2|z=0
0z* [fex

(20)

The boundary conditions for Eqs (13) and (20). According to the theoretical
model the limiting case of the uniformly fluidized bed is an isolated particle falling
at a terminal velocity v, in an unconfined quiescent fluid. This means that a solution
of the mathematical model of the uniformly fluidized bed for R — co must reduce
for the stream function, pressure and velocity components v,, vy, v, to the Stokes’
solution in an unconfined fluid. Usually, expressions for these quantities in case
of an isolated particle are expressed in terms of the spherical coordinates. After
transformation into the cylindrical coordinates one obtains equations which may be
used as necessary conditions for a test or the assessment of correctness of the expres-
sions for the flow past a particle in the uniformly fluidized bed for R = o and z = 0.

Stokes” solution in cylindrical coordinates is independent of @ and reads

llj(r) z)|R=no = ﬁ (1 - 2( 3r0 + To )’

2 rr 4 22 2(r? + 2232
_ 3urorz 3vrirz _ 1oy
o(r, Dpew = = 4 _;_ 2y + a0 _;_ 2)572 T ez

Ue("s Z)'R=ao =0
\ 3rov,2z? 1 re
vz(r? z)|R=au = - 4‘ I:(rz I 22)3/2 - (rz + 21)5/2 -

_ 3rev, _ Tob, T
4(,,2 + 22)1/2 4(r2 + 22)3/2 v

or

4

2 2
o, Z)|R=co _ 3oaor I:( 1 _ re ] +

r2 + 22)3/2 (rZ + 22)5/2

3 Py
+o |l — 3o + To _1o ,
207 + 22 2(r* + 222 r or

3uvrez

e = pO — — L2
pl“— P 2(,,2 + zz)a/z

(21)
(22)~ -

(23)

(24)

(29)

(26)
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Additional suplementary conditions to Eqs (13) and (20) shall be derived by the
following argument: Consider a ring of fluid symmetrically on both sides of the main
plane in cylindrical coordinates for r e (ro, R) as in Fig. 2. This Fig. shows a cut
ABCD through the particle’s center at 6 = const. by a plane perpendicular to the
main plane. The shape of this cut is independent of the angle 0. Let p,, or p,, be the
stress vector at the point M(r, 8, 0) in the elementary surface perpendicular to z,
or r. A projection of the vector p,, or p,, into the direction of the axis z shall be
designated as p,, or 7,.. If from the volume forces only the gravity acts on the fluid
then, using Fig. 2, we may write

—goc[rn(r + dr)* — nr*] dz + 2n(r + dr) (11, + é %dr) dz —
or

- 2nr (1, — 1 %dr) dz + [n(r + dr)* — w?].
2 or

.[pu+%%”‘ldz—(pu—lﬁdz)]=o. (27)

z 2 0z

Eqg. (27) rearranged and after neglecting small first-order quantities yields

Jt 1 d
~go + S8 4~ + Do, (29)
ar 0z
After substitution from Eq. (15) into (28) we obtain
[ 8%, % %,
—gg,————pFO + '“(2 - 2Zz=o+ zzz=0 a——rz=o+ (29)
0z i 92" |rex or* [fex Or 0zex
v, 1dv
+ z| -t _}=0, 1 Jpaa
|l rooz f;x") Pt 252
dr
D c
f —_—— d
0(08,0) M(0,0) Z
A B
R
Fi1G. 2

) o 1 dg
Stresses Assigned to Surfaces on an Infinitesi- & 57
mal Ring of Fluid in Cylindrical Coordinates )
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for we generally have

ov. ap. ap
.= —p+2u—=, or —HE= -2
P P #62 oz 0z

A comparison of Eq. (13) and (29) yields the relation

1 dv,

o0,

=0
X Oroz

z

z=0
reX

v
=X roz

2
022 |25

2%,

z

(30)

€)

Egs (I13) and (31) are met provided we substitute from Egs (22) through Eq (26),

which is a necessary condition for their adequacy.
Eq. (31) yields important boundary conditions

%
0z

2

o

z=0 4 2=0
reX Or 0zrex

>

8%, 0
z=0
r

0z2 |

2%v,|

022

_ 1 oy,
z=0 .

t=re  To O
iR>ro

z=0
r=rp
R>ro

v _gor 10
or?

z=0

TSR W WOz

z=0
r=R

(32)
(33)

(34)

(5)

and other expression which may be useful in the solution of the problem of the flow

past a particle within the bed.

These other conditions and relations are obtained by the following arguing: Let us
designate a set of streamlines passing in the main plane through the circle of radius
r € (ro, R) with the center coinciding with that of the particle, by the term adjoined
and the enveloped surface formed by these streamlines is the surface of adjoined
streamlines. For a given r each particle is assigned equal surface of adjoined stream-
lines. The planes parallel to the main plane intersect with the surface of adjoined
streamlines in closed curves. According to the geometrical configur ation of particles
in the structures of type A and B these closed curves deviate from the circle the less
the greater the porosity and the smaller the distance of the given plane from the main
plane. For an isolated particle in an unconfined fluid & — 1, these curves become
circles in an arbitrary vertical distance from the main plane and an arbitrary r.

If in the cylindrical coordinates according to Fig. 1 one draws through the origin
aplane § = const. (perpendicular to the main plane) its intersections with the surfaces

Collection Czechoslov. Chem. Commun. [Vol. 4] [19791
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of adjoined streamlines form streamlines falling into this plane. Corresponding images
of the streamlines shall be termed lines n. A set of n lines for an arbitrary r is, for the:
structures A, A,, A, and B, symmetric with respect to the axis z passing through
the center of the particle but the shape of the n lines for a given r depends on the
angle 6 and repeats after a certain period of values 6. In case of structure B, and B,
this symmetry remains preserved only for certain angles 6. In case of the flow past
an isolated particle in an uncofined fluid, 8 has no effect on the shape of the n lines.
characterized in Fig. 3. The m lines are perpendicular to the n lines and each of them
is the line of constant potential of the velocity vector which is the potential vector.
The line m = 0 falls into the main plane.

A family of the surfaces of the adjoined streamlines continuously fills the space
assigned to the flow past the particle, excepting the normal passing through particle’s
center. The family of the n lines fills continuously the plane 8 = const. in the region
corresponding to the flow of fluid passing past the particle. The velocity vector v
in an arbitrary point M(r, 6 = const., z) is thus situated as a tangent to the line n
passing through this point. This vector makes with the vertical an angle f which
shall be taken positive if the velocity component v, is oriented toward the origin
of the coordinates. Thus we may write

v, = wvcosf, (36).
v, = —vsin
and also
v, = —uv,1gfh. (37)
FiG. 3

Streamline (lines ny, n,, ...) and Equipoten-
tial Line (lines m,, m,, ...) for Flow Pattern
under the Creeping Flow Past an Isolated
Particle in an Unconfined Fluid

Collection Czechoslov., Chem. Commun. [Voi. 44] {1979)
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From the last equation we have

v, av, at
W _Onygp, 08E (38)
Jz z 0z

For z = 0 Eq. (9) holds and thus

B\
=0T T ( 2z)

because for z = 0 beta equals zero and hence

dv,
0z

=0 (39)

reX

otgf _owpaop _ 1 0p (40)
oz 0p 9z cos*Boz

In analogous manner we obtain from Eqgs (37) and (38)

a [o a [/
 Tohe -0
X or\oz ) ||rx or 0z

An arbitrary plane 8 = const. passing through the center of the particle perpendi-
cularly to the main plane is an osculating plane for all encompassed streamlines at the ..
points where these intersect the main plane. If g is the radius of curvature of the
streamline for z = O then its corresponding n line in the close vicinity of the main
plane may be identified with the circle of radius equal to the radius of curvature g.
According to Fig. 4 where An’ is the length of arc on the circle of radius ¢ correspond-
ing to the angle f’ we may write

&,
or 0z

_ Oy,

z=0
reX or

op

z2=0 5_
rex 0z

oo (4D)
reX

B = An’jg = arcsin (Az)g) ,

Fi1G. 4

Sketch of the Radius of Curvature of the
Streamlines in the Main Plane under the
Creeping Flow
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because § = f'. From this

b
0z

2

4

_0=lim v l__A_iﬁ_g =1_ (42)
20 -0 \/(1 _ (Az)z) o %oz 0

The values of ¢ are known for two limiting conditions: a) According to the theoretical
model for the creeping flow past the particle we have

@—>re, When z=0 and r-—->ry, £€ Emml). (43)
b) For R — o, or¢ — 1 (isolated particle in an unconfined fluid) we have

0 = (4r* = 3rgr® — rar)[3ro(r? — 13) (44)

" =gfro=(4r** =32 — r")3(r*2 - 1), (45)

where r* = r[ry. Eqs (44) and (45) are equivalent.
The derivation of Eq. (45): Eq. (45) has been derived from (21) after its arrange-
ment to the form

r

l[/(r, z)|R=°Q = % (r—o)z {1 — 3/2[(r/r0)2 + (z/ro)2:|1/2 +
+ 1/2[(r[ro)* + (2[ro)*]**} . (46)

Putting, in Eq. (46) ¥(r, Z)ln —w = const. = s;, where ¥; € <0, c0) we obtain an equa-
tion for the streamline in dimensionless variables z/ro and rfr, which, for z = 0
intersects perpendicularly the main plane. From Fig. 3 it is apparent that the inde-
pendent variable of the implicit function is z/r0 because a single value r/ro has two
values z/r,. If Fig. 3 is rotated so that the positive direction of the axis 7 in the cylin-
drical coordinates becomes identical with the positive direction of axis r/r, then the
positive direction of the ordinates becomes identical with the negative direction
of the axis z and for the independent variable in the expression for the stream line
one has to take

x = —z|rg. (47)
Then the dependent variable is

y=rlr. (48)
The streamlines for rfr, < 1 are curves oriented in the direction of the negative

Collection Czechoslov. Chem. Commun. [Vol. 44] [1979]
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axis z. Positive normal to the streamline for z = 0 is directed as the positive axis
rfro and the center of curvature falls onto the negative normal. This means that the
curvature of the streamline is negative and the computed radius of curvature ¢ has
a sign opposite to that of the quantity ¢ in Eq. (44).

Let us rewrite Eq. (46) in an implicit form

F(x, y) = %yl {1 =302[p% + (=x)2]"* + 12[y* + (=x)*]*} = ¢, =0,

(49)

where i, is a constant. Then we have

Flo Fy Fy
et = — &fro = (F2 + F)?| | Fy, Fy, Fy|. (50)
F\ F, 0

The symbols F’ or F” designate the first and second order partial derivatives of the
function F(x, y) with respect to the variables shown by the subscript. For z = 0
we may write

—0* ={lfro = =F(0, )[Fi{0,y) = ~(4y* =3y =y’ - ). (51)

According to Eq. (48), we can infer that Eqs (45) and (51) are identical.
Equation (42) plays an important role in the formulation of the boundary conditions
for Eqs (13) and (20). After substitution into Eq. (31) from Egs (39), (4/) and (42)

we obtain
2
Tof o _m| o Low) GV o, (52)
022 50 relix’ e orfix or\e/ lix
or
2
L"zﬁo_li& 0 =0. (53)
02 [ ror\ e JIix

In the points of contact of the two boundary circles we must have according to the
theoretical model that

===0 (54)

because the vertical plane passing through the contact point of the two boundary
circles separates equal subspaces of the stream around two neighbouring particles.
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Corresponding streamlines on a finite segment on both sides of the main plane shall be
perpendicular to this plane.

Owing to the continuous distribution of the velocity vector the streamlines pas-
sing through the remaining points of the boundary circle satisfy condition (51)
but the section where these remain perpendicular diminishes with increasing distance
from the point of contact of the boundary circles.

For the boundary circle thus we have generally
lJo—»0, when r—>R, z=0. (55)
If for the boundary circle Eq. {55) is valid, then owing to the continuous change
of the velocity vector we may write for the region of constant velocity between two
boundary circles that
1le=0, when r>R, z=0. (56)
From Egs (55) and (56) there follows
1lo=0, when r= R, z=0. (57)
From Eqs (57), (49) and (39), or from Eqs (41), we get (32), or (32),. From Eqs (31),
(32); and (32), we have in turn Eq. (33).

For the creeping flow past the particle we have ¢ — roif r - roforz = 0, R > r,.
From Eq. (42) then follows

B 1
—| = —, or g __ =7T7q. 58
0220 o i 69
R>rg R>ro
Since the fluid with internal friction satisfies
v,(r0,6,0) =0, (59)
one obtains from Eq. (58) and (39) or (41) that
2 16
% =0 = or 7o =0 T~ _&1‘0 ' (60)
0z|IZn or dz|; 2., ro orliZs,
R>ro R>ro R>r1g

From Eqs (31) and (60) there follows Eq. (34).
The function v = u,(r, 0, 0) on the connecting line of the centers of two neigh-
bouring particles passing through the point of contact of the two adjacent boundary

Collection Czechoslov. Chem. Commun. [Vol. 44] [1979]



3214 Befia, Havalda :

circles may take formally the form according to Fig. 5 or 6. For a fluid with internal
friction the situation is as that in Fig. 5 according to which

av,

=0,
or

z=0
rzR

(61)

The validity of Eq. (61) for r > R follows from the theoretical model because in region
with constant velocity between the boundary circles is

V,|,=0 = u = const.

>R

(62)

From Egs (61), (33) and (13) we get Eq. (35). In case of an isolated particle when
g¢=1lorR = cothen

op 9Pw
- = = — 63
ozzzy " oz o T T @)
From Eqs (35) and (63) there follows
v
£ =0. 64
oz, (©4)

Analysis of the left hand side of Eq. (35) requires following considerations regarding
the value of dp/dz. From the force balance and Eq. (12) there follows that between

d r

|
i
; I R

FiG. 5
Assumed Velocity Profile in the Main Plane
on Line Connecting Centers of two Neigh-
bouring Particles Passing through the Point
of Contact of the Boundary Circles Assigned
to these Particles

FiG. 6

Formally Possible but in a Real Fluid
Improbable Velocity Profile in the Main
Plane on the Line as on the Previous Figure
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two main planes in an arbitrary stream tube the decrease of the static head amounts to

h
Py, . (65)
z

[~g0 — g(e. —e)) (1 — E)] h =J

00
For local values under the creeping flow past the particle we have

0poz = p,|0z + Op,[dz + Ops)oz, (66)
where dp,/dz characterizes expansion or contraction of the stream tube; 0p,/dz
corresponds to the increase of potential energy of the fluid, and 6p3/62 is a measure
of dissipation of the mechanical energy due to the viscous friction. According to the

theoretical model the cross section in each or in every second main plane is the same
and hence

h 2h
Prg 0 or [ Praz=o. (67)
0 0z o 0z
We have also clearly
b
7
J P2y, - —goch, 9p,[oz = —gor . (68)
o 0z

From Eqs (66) through (68) we obtain

[ - —ste - - (®9)

ml NN

Fic. 7
Streamline Pattern for Structures A, A, A, / %

in the Vertical Plane Passing in the Main \\
Plane through the Particle Centers and Points

of Contact of Boundary Circles
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or

rh 93 4z = —2g(g, — e (1 — o) b (70)

o 0z

Since according to Eqs (9) and (6!) the elementary stream tubes passing through the
boundary circle within an infinitesimal neighbourhood of the main plane do not
change its cross sectional area we have

n

P =0. (71)

z2=0
r2R

Fig. 7 depicts the streamline for any of the structures A, A,, A, in the plane 8 =
= const. passing through the points of contact of the boundary circles. The shape
of the streamlines is symmetrical with respect to the horizontal plane in the middle
between two adjacent main planes. This symmetry of the flow past the particle
remains preserved in any arbitrary vertical plane passing through the particle center.
A more complex picture of the streamline pattern appears during the flow past
a particle in the structure B, or B;. Fig. 8 gives the expected pattern of the stream-
lines in case of the structure B, in the plane @ = const., whose contour is shown
in Fig. 11 by a straight line. The symmetry of the streamlines exists only with respect
to the main planes.

According to Fig. 7 it must be expected that between two main planes the

values of p; for an elementary stream tube which envelopes an arbitrary streamline

Fic. 8
Streamline Pattern for Structure B, in one
of the Vertical Planes Passing in the Main
Plane through Particle Centers
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gradually depart symmetrically on both sides from the straight line

Y=po—glo,—e)(1 —¢)h, (72)

where p, is the static pressure on the given main plane from which the values of h
are calculated. For the stream tubes passing through the boundary circle we adopt,
appart from Eq. (72), and additional assumption in the form

P = —dle - )1 9). (73)
0z 32g
The assumption (73) expresses the fact that, apart from the mentioned symmetry,
Eq. (71), holds and the streamlines passing through the boundary circle remain
perpendicular to the main plane in a finite distance, i.e. there is no bending or ex-
pansion of the streamtubes which could cause deviations of the expression on
the left hand side of Eq. (73) from the mean vyalue given by the right hand side of (73).
The streamlines in Fig. 8 passing through the boundary circle are shown by broken
lines. As these are symmetric with respect to any main plane, i.e. that Eq. (71) is valid,
and remain perpendicular within a finite distance from the main plane, one has to ex-
pect even in this case the validity of Eq. (73).
According to Eqs (66), (68), (71) and (73) we have

o

= —go— glos — e) (1 — ). (74)

On substituting from Eq. (33) and (61) into Eq.r(13) we obtain (35). From Eq. (35)
and (74) there follows
3%,
or?

o= = ~gle—e)(1—9). (75)
r=R K

In accord with the above it is generally true that

oP
0z

ap

9z 2507 (76)

reX

veo = — 90— g(os — o) (1 — &) +
reX -

. 0P
where the expression —

=0 is, according to Eq. (26), a variable of some function
z

reX

F (7
0z
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from which it can be expressed explicitly. From Eq. (74) and (76) we have

oP

o =0 (78)

reX

The validity of Eq. (78) for r > R follows from the theoretical model because there
are no velocity or pressure variations in region between the boundary circles. From
Eqs (13), (34) and (76) we obtain after some arrangement

8P| %, 2 oo,
= glo, — 07) (1 — &) = 5 _ 79
Py gle, — ey (1 —e) = u o bze T ok (79)
R>rg R>r1o R>ro
Since under the creeping flow past the particle there follows
2
v, = Z 9ro(Qs Qr) (80)
9 U
we may write
9 pv,
. — o) == ¢ 81
glo —e) =7 2 (81)
or
oP| 2 2 oy,
. =2”_2(1—e)+,u 6u;z=o %2 , (82)
aZ r=ro 2 or r=ro o ar r= ru
R>rg R>ro R>rp

Equations (1) through (4), (13), (20) and the boundary conditions represent the
basic material for the mathematical solution of the flow past the particles in the main
plane. The presence of the Laplace equations (13) or (20) in the set of equations
is quite demanding as far as the boundary conditions are met. These requirements
have not be thus far met.

In this work we shall show that with the above knowledge one can formulate
a simplified mathematical model amenable to analytical method of solution. The
results of the simplified solution enable formulation of the complex model.

The Simplified Mathematical Model

From the physical concept and Eq. (54) it is apparent that for porosities close to those
at incipient fluidization the value of g causes to increase very rapidly with the distance

Collection Czechoslov. Chem. Commun. [Vol. 44] [1979}
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from particle’s surface. According to Eq. (2) it means that in these cases the derivative

2%,

22*

z=0
reX
vanishes very quickly. The quantity

2
0*v,

2=0
or* |rex

however, according to Eq. (75) retains large values of the order of magnitude
g(e. — o7) (1 — &) in the whole interval r e (ro, R).

From this as well as from Eqgs (I3), (34) and (76) one can conclude that for porosi-
ties close to that of incipient fluidization we may write
9%,

<3
2=0 2 z=0
reX or reX

2
ofF _).—‘.0 v,
0z |55 022

From Egs (13), (59), (61), (76), (82) and (83), after neglecting the terms %P and

op

2=0° o
reX 0z

r
0z

<gle. —e)(1 -9, (82a)

o) (#3)

reX

2=0
Z rex
v,

z

_o there follows a simplified equation (13) with the boundary condition in

0% |75
the form
1dfdo) _ _p
rdr\ dz

=0, (84)

Eq. (84) together with Eqs (I) through (4) represent a simplified mathematical
model of the flow past the particle in the main plane where for input quantities
we take w, d, ¢, K (or Ar, Re, ¢), H,, H,0(&). According to the relationships defining
H, H, and ¢ one has to distinguish between three kinds of structural types 3

a) structural types A, and B,, for which the corresponding quantities shall be
designated by the superscript (1); b) structuraly types A,, B, and Bj, for which the
corresponding quantities shall be superscripted by (2); ¢) structural types A, distin-
guished by the superscript (x).
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This means that for Eq. (84) there exist three different groups or relations for
H,, H, and o; thus we have three simplified mathematical modeis. Only one of these
though represents the uniformly fluidized bed in the state close to incipient fluidiza-
tion. Solution of this model with the aid of the experimental data for Ar, Re and ¢
for the expansion of the uniformly fluidized bed enables the value of h/R = ¢(e)
to be determined. The computed value of h/R at the porosity of incipient fluidization
Emin € (0-412; 0-420> must be identical, within experimental error, with the value
tabulated in Table III of previous work? for the structural type characteristic for the
uniformly fluidized bed. This identifies the geometrical configuration of particles
in the uniformly fluidized bed in region close to incipient fluidization. The remaining
two mathematical models cannot supply, for the values of Ar, Re and ¢ measured
during expansion of the uniformly fluidized bed, values of h/R equal to those for
incipient fluidization in Table III. This is so because individual structural types
exhibit different characteristic triples of values Re, Ar and ¢ than for the uniformly
fluidized bed and the first condition of stability must be met!.

Solution of the Simplified Mathematical Model

’

Eqs (84) yield the relations

\

KR?*  2r Kr? K_dZ

v,(r,0,0) = ——In— — — + 85
( ) 2 d 4 16 (83)
or
R 4 4 232
J v,rdr = KR Ing _ KR + KRd . (86)
o2 4 d 16 16
TaBLE II

Parameters of the Uniformly Fluidized Bed for Structures B, or B, Based on Simplified Mathema-
tical Model (Eqs (96), (98), (103), (104)) where ‘2 (e) = p{2)(e) (from Table I)

€ ulv, hid Iid £ ufv, hjd Iid

0-400 0-0512 071252 1-1892 0-450 0-0779 071287 1-2418
0-408 0-0550 071266 1-1971 0-500 0-1129 071231 1:3029
0412 0-05695 0-71270 1-2011 0-550 01580 071156 13742
0416 0-0589 0-71276 1-2052 0-600 0-2145 0-71135 1-4577
0-420 0-0610 071282 1-2093 0-650 0-2841 071281 1-5567
0-700 0-3688 071737 1-6761
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According to Eqs (4) and (85) we bave

2 2 2
LR R KR K @)
2 d 4 16

Solving Eqs (1), (2), (86) and (87) we obtain after rearrangement
Re® = whdg[u = {5 Ar oD(e), whp, = w(e), (88)

There the superscript (i) = (1), (2), (x) refers to individual groups of structural
types and we may write

0= -9 —mm) (" GaTe) -

e ) : ®
16 32 256[n/24(1 — &) pV(e)]? ,
2/3 s
e8] (o) ]
12 J3(1 ~ ¢) 9'P(e) 12 J3(1 - €) p(e)
_12+n\/3 +6+1r\/3_ x o0
24 48 128 /3[n12 /3(1 — &) 9P(e)]*f
2/3
w(x)(e) = 9(1 — e) : 21:
o sin2a
6(4tg- + 1 — &) o™(e
( e cosza/Z)( ) 0*(e)
173
.(ln 2 27‘ _ % B
sin 2o
64t + 1 — &) o™(e
< g 2 cos? oz/2) ( ) ()
n 1 .
— N 2 + g + - za —
4 4tgf+ sin 2o g 4tgg+ sin
2 cos?of2 2 cos?af2
4 - “us (91)
a sin 2o o sin 2o
256(4tg; + ~ 6(4tg—- + 1 — &) (¢
( 27 oo “/2) ( B2 cos? a/2>( ) 0(e)
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Eq. (85) can be rearranged using Eq. (2); or the relationships for R according to the
Table 1 in ref.? to give

vPdofn = Rel? = &5 ArxV(e), oo, = xe), (i) = (1),(2),(x), (92
where

#0() = 9(1 — &) {[n]24(1 — &) @M(&)]¥* In2r)d — r2J2d* + 1J8}  (93)

1B e) = 9(1 ~ &) {[n/12 /3(1 — &) P(e)]** In2r|d — r*[2d*> + 1/8} (94)

- .

*{e) = 91 — ¢) - i " In r_r + 1
6(atg®+ 51 20 (1 = &) o) d 2d* 8
2 cos®af2
(93)
In the region of constant velocity we have
Rel? = u do;[u = 1/18 Ar EP(e), or uVfp, = E(e), (96)
There from Eq. (4) and (92) through (95) we have
¢M(e) = 9(1 — &) {[x[24(1 — 2) @ (e)]** [In (2 (n[24(1 — &) 0"(e)'") -
—1/2] + 1/8}. (97)
EP(e) = 9(1 — ) {[n/12 31 ~ &) p@(]* [In (2(n[12 /3(1 = &) 62())'*) —
—1/2] + 1/8}, (98)
£0) = 9(1 - ) =
g Sin 2o _ (x)
6 (4 tg 2 + os? m/l) (1 — &) e™(e)
In (2 : 2" M\ % + % (99)
6(a1g® 4 SN2 N
( b 2 * cos? af2 (-2 e™0)

Relationships (89) through (99) contain an unknown function ¢®(e) = (h/R)"
which must be found in a suitable manner.

Calculation of h|R. This calculation can be carried out from Eqs (88) through
(90) by successive approximation. For this purpose we use the following equation
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instead of Eq. (88)

— 1. (100)

18 Re
o) — —
o - 228

There A is small positive number. In the calculation we put A = 107 and 1 = 1078,
The values of h/R calculated for these two cases differ only on the fifth decimal. The
quantity Re in Eq. (100) does not have the superscript (i) (i) = 1, 2, x) for the values
of Re are measured for the expansion of the uniformly fluidized bed whose structure
is not known a priori. Expressions @¥(¢) are defined formally in the same way as
$(e) except that the former satisfy also the condition (100) which under the equality
»(e) = w{’(¢) holds only for the structural types corresponding to the uniformly
fluidized bed Then the values h/R = @'")() possess a physical meaning. The values
h[R for the remaining structural types are physically meaningless for the group
Re/Ar measured in the uniformly fluidized bed does not correspond for given &
to these. structures.

For the uniformly fluidized bed at Ar < 7-2 we may write® with a relative error less
than 5% the following Eq.

Re = g Are*o5 . (101)

TabLe 111
Data for the Assessment of Validity of Condition (82)

rg, P rg 820{
- | 2l

2 3 )
£ o =0 v, artfmo T @09

t r=ro r=ro

. R>r R>ro
0-400° 05592 32592 27
0-408 05769 32409 2664
0-412 05857 32317 2646
0416 0-5945 32226 2:628
0-420 06034 32134 2610
0450 0-6709 31459 2475
0500 07848 30348 225
0550 08995 2:9245 2025
0-600 10123 2:8123 18
0-650 11209 26959 1575
0-700 12213 2:5713 135
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For the calculation of h/R = (p(e) we therefore may use the following equation
instead of Eq. (100)

|wP(e) — &°%| = 4. (102)

The values hfR were calculated on the one hand from the experimental data
given in ref.® from Eq. (100) and, on the other hand, from Eq. (102). Since the results
did not differ appreciably, Table I provides only results following from Eq. (102).
The quanlmes 0§ (e) = (h|R)V, or ¢{P(e) = (h/R)® have been assigned to the
quantities w§’(€) or @{(e). It can be shown that the values ¢§’(¢) computed from
Eq. (102) for w{(¢) fall into the interval (p{(¢), ¢{’(e)) and vary with the
magnitude of the angle a.

From the above the value ¢{"(g), ¢¢(¢) from Table I should be compared for
e e <0-412,0-420) with the values V() = h/R from Table 111 in ref.? which were
derived from the geometrical concept for all plausible structural types. The content
of the Table III from ref.? is shown graphically in Fig. 9. The uniformly fluidized
bed at incipient fluidization exhibits that structure for which ¢{(¢) = ¢“(¢). From
this comparison it is clear that the uniformly fluidized bed at incipient fluidization
can plausibly exhibit only structures B, or B;. In addition the stratum of the fluidized
state beginns by contact of particles from adjacent main planes while the particles
within the main plane still do not contact each other. For this case the Table I shows
values 1fR = @(g) = ¢@(&) from Table IIT of ref.2. The agreement between ¢{2'(e)
and ¢'®(e) in Table I may be rated as very good. From Fig. 9 it is apparent that

£min

06—

04

02

Fic. 9

Porosity &, as a Function of /R = g(¢) which May Cause in Beds of Various Structures the
Loss of Fluidized State after Contact between Particles
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»4(e) and ¢{(¢) cannot belong in region of incipient fluidization to any structural

type.

The geometrical configuration of particles in the main plane in the structure B, and
B, is apparent from Fig. 10. Fig. 11 or Fig. 12 depict spatial configuration of the.
main planes in the structures B, or B;.

\::/’)
FiG. 10 Fic. 11
Geometrical Configuration of Particles in the Spatial Configuration of Main Planes in
Main Plane for Structures B, and Bj Structures B,
The circle within the hexagon is the Only boundary flow patterns with bound-
boundary circle; internal circle depicts ary circles are shown.
particle.

FiG. 12

Spatial Configuration of Main Planes in Structures B
Only boundary flow patterns and boundary circles are shown.
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The geometrical configuration of particles in the structures of the type B, or By
significantly differs from that in the structures A,, A,, A, and B, (ref.?), which
still strike the balance of the gravity, buoyancy and resistance forces for each particle.
This justifies the assumption that the uniformly fluidized bed displays in the whole
interval of porosity ¢ € {gyqn, 1) the structure of the type B, or B;. The first condition
of stability of the uniformly fluidized bed means that from all possible beds with the
structures of the type A and B for given porosity & > &y, superficial velocity of the
fluid W < wy,, given particles and fluid, the uniformly fluidized will be the one
minimizing the rate of mechanical energy dissipation in the course of the flow past
the particles. The type of the structure must necessarily strongly influence the rate
of dissipation for otherwise identical conditions and since the admissible structural
types markedly differ, it is probable that the minimum rate of dissipation is associated
with only one structural type.

Table 1I summarizes values ufv,, h/d and I/d computed on the basis of the sim-
plified mathematical model, assuming its validity up to the porosity 0-70 and the
structures of the type B, or B;. For the spacing ! of the centers of the particles in the
main plane (see Fig. 10 of this paper and Table I in the previous paper?) we may write

I1=2R, or l=d=2Rld=2[(n[12./3(1 — &) oP()])**. (103)
The quantity h/d is given by

hld = [(t12 J3(1 = £) 0@(E]" 0D(e). (104)
The values I[d, in accord with the theoretical considerations, satisfy the condition
I/d > 1, i.e. no contact of particles in the main plane. The spacing of the main
planes, measured by the dimensionless expression h/d, are smaller than in the case
if in the structures B, and Bj; the particles should contact both between the adjacent
main planes as well as with in the main plane. For this limiting case g, = 0-2595,
hjd = 0-8165 and h[l = d.
Figs 13 through 15 show the velocity profiles in the main plane computed from
Eqs (92) and (94) in terms of the dimensionless variables v,[v|,- and r/d, for the

r<R
structures B, and B;. The values ¢®)(g) for each & were computed in the same
way as () in Table I. The broken line pertains to an isolated particle in an
unconfined fluid when R = co.

From the approach applied in the process of the model simplification it follows
that a solution of this model satisfies the conditions (59), (61), (64) and (75). For
an arbitrary R we may write

oP a%v,
z=0 5 2(z=0

0z, 027 |r=py
R >r0 R>r
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i.e. condition (83) may be regarded as satisfied in view of Eqs (53) and (78). For large
R, however, the conditions (82) are not met.

Table III summarizes data computed from the simplified model important for the
assessment of validity of condition (82),. The values in the third and the fourth
column of this table are the limiting values for the expression

ro %,
o -
uv,  or ot FEA
reX
T
r T =099 l T { e=0" 999999
10—~ 099 10~ e
09 0999 /
WY - Py - Y/ -
-
#
06— [ fos - 06~ 0999999999
i
o2H _ 02 }
| | | Lo | |
1 2 d Z 0 80 ,,d %

Fi1G. 13
Dimensionless Velocity Profile (approximat-
ion solution)

v, /v, = F(r/d) for the flow past the par
ticle in the uniformly fluidized bed with dif-
ferent porosity and for the creeping flow past
an isolated particle. particle within
the bed, —-—- isolated particle.
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2
The quantity op =g fore = 0-400 is approximately six times smaller than i;—uzl =0 but
r

r=ro r=rq
R>ro R>ro

with increasing porosity both values converge. From Table 111 it may be assumed that
Fig. 13 is a good approximation of reality. The curves in Figs 14 and 15 for & >
> 0-8 carry a large error.

LIST OF SYMBOLS

A structural type or cross sectional area of region of constant velocity within bound-
ary flow pattern

Ar = ya’a(gS — 0p) gr/u2 Archimedes group

d diameter of spherical particle

g acceleration due to gravity

F(x, ) function in Eq. (49)

F;, Fy’ first order partial derivatives of function F(x, y)

FYy Fyy, FYy, Fyx second order partial derivatives of F(x, y)

h spacing of main planes

H coefficient from relation §| = Hle from Table I of ref.2

H, coefficient from 4 = H,R? from Table I of ref.?

(i) superscript (1), (2), (x) distinguishing between three groups of simplified mathema-
tical models describing three groups of structural types

K constant defined in Eq. (84)3

! spacing of center of particles in main plane, Eq. (/03)

m equipotential lines (velocity as potential vector)

n pattern of stream lines on § = const. plane passing through particle center as the ~
origin of cylindrical coordinates

P pressure, Eq. (76)

P pressure in Navier—Stokes equations

p* pressure, Eq. (/5a)

Po value of p in main plane, as background pressure

PiaP2 P3 fictious components of pressure p = p; 4 p, + py caused by expansion or

contraction of streamtube (p,), change of potential energy (p3) and dissipation
of mechanical energy (p3)
Per» Pog» Poz  OTmal components of stress tensor for a Newtonian fluid in cylindrical coordinates
P pressure in the plane of equator at R = oo for an isolated sphere where the relative
motion of the fluid in an inertial frame of reference is caused only by the motion
of the sphere

r radial cylindrical coordinate with the origin at the center of the particle, see
Fig. 1

rt dimensionless cylindrical coordinate of radius r* = rlry

o radius of spherical particle in the bed

R radius of boundary circle

Re = dw g;/u Reynolds number

Re = dw g¢/u Reynolds number (i) = (1), (2), (x)
RelD = du') g/ Reynolds number (i) = (1), (2), (x)
Re{) = dvi) g¢/u  Reynolds number (i) = (1), (2), (x)
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S, surface area of a boundary flow pattern

u local velocity of fluid in the boundary circle and in region of constant velocity
between boundary circles

value of « for structural types (i) = (1), (2), (x))

v, radial velocity component in the boundary flow pattern in the principal plane

v, terminal velocity of settling of an isolated spherical particle in an unconfined real
fluid

v, local z component of velocity in main plane near the particle for r < R (direction
of axis z in Fig. 1)

vy velocity component as in Fig. 1 in the boundary flow pattern

w superficial velocity of fluid in the uniformly fluidized bed

w® superficial velocity for structures (i) = (1), (2), (x)

W, velocity at incipient fluidization

¥

Y dependent variable, Eq. (72) with independent variable h

z axial cylindrical coordinate, Fig. 1

4 angle of as in Fig. 8 of ref.!

BB angles as in Fig. 4

An’ length of arc on the circle of radius ¢ for the angle ', see Fig. 4

£ porosity of uniformly fluidized bed

Emin porosity of uniformly fluidized bed at incipient fluidization, or minimum bed
porosity

E=—0

[ angular coordinate as in Fig. 1

(e function from Eq. (92), (i) = (1), (2), (X) given by Egs (93)—(95) provided the
fluid flows under the force balance on every particle

A constant in Eq. (00) or (102)

U dynamic viscosity of fluid

v kinematic viscosity of fluid

&g function in Eq. (96) for (i) = (1), (2), (x) given by Eqs (97)—(99)

0 radius of curvature of streamline for z = 0, r € <’0» R)

¢t = o/ry  dimensionless radius of curvature

Qﬁ— ) fluid density

Qs particle density

a(s) function from R = da(e) [az(s)]””3 for the uniformly fluidized bed

() function from R = da(i)(e) [w“)(e:)]ﬂ/3 given in Table I of ref.2 for (i) =

=1, @, ®
T,9» Tors Tozr 0200 Trz» @7 tangential components of stress tensor in cylindrical coordinates
o(e) = h/R for uniformly fluidized bed

(a“)(e) ratio h/R for structures (i) = (1), (2), (x) in case of force balance (gravity,
buyoancy, resistance)

w(,:)(e) computed from Eq. (J02)

728 stream function

o) function from Eq. (88) for (i) = (1), (2), (x) given by Egs (89)—(91)

a)g)(e) function for (i) = (1), (2), (x) taking formally the same form as »W(e) but nor

necessarilly satisfying Eq. (88), which satisfies (102), i.e. the variable is qo(*i)(s)
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